A Constrained Saddle Dynamics for Computing
Electronic Excited States

Yukuan Hu

Centre d’Enseignement et de Recherche en Mathématlques et Calcul Scientifique
Ecole nationale des ponts et chaussées, Institut Polytechnique de Paris

CERMICS Young Researchers Seminar
13 January, 2026

<@, INSTITUT
& i\ POLYTECHNIQUE
e “Y&/: DE PARIS

CHAUSSEES Euroj



https://huyukuan.github.io
https://cermics-lab.enpc.fr/
https://ecoledesponts.fr/en
https://www.ip-paris.fr/en

Time-Independent Many-Body Schrodinger Equation (SE)

Pauli '25; Schrédinger '26; Born, Oppenheimer '27

_ Z r; ZZ’T—R[‘ Z —7’]‘ \I/(rl,...,rN):E\I/(rl,...,rN)
=1 T;

=1 I=1

~~

Hy, py=11

» {R;}, CR3: prefixed nuclear configuration, with charges {2/}, C N}
» U c AVL2(R3;C): normalized antisymmetric wavefunction
» H: Hermitian electronic Hamiltonian

» E € o(H): energy associated with ¥

1/25



Time-Independent Many-Body Schrodinger Equation (SE)

Pauli '25; Schrodinger '26; Born, Oppenheimer '27

Example. Water molecule HoO
M=3,N=10, Zl=8, 22=Z3=1

Fig. 1. Water molecule (cr. CORDIS)
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Electronic Ground and Excited States

Zhislin’s theorem znisin 's0

If N < Zyzl zr (neutral or positively charged), then o(ﬁ) looks like

essential spectrum
foN R

ground state U}  excited states {U} }5>1

Fig. 2. Spectrum of H

Excitation energies: E1 — Ey, Fo — Ey, ...
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Electronic Ground and Excited States

Ground/excited states are critical points
N
E(T) :=Tr(HT) with T € M™" .= P</\L2(R3; <C)>

» [ := UU*: density matrix
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Electronic Ground and Excited States

Ground/excited states are critical points
R N
E() := Tr(HT) with T € M .= P(/\L2(R3; <C)>

» Riemannian gradient and stationary condition

grad pgecacs ) = [[, [T, H]] =0 < HY = &) (many-body SE)
» Spectrum of the Riemannian Hessian at the critical point I'} := Wy (U5)*

o (Hess pqexact E(Ty)) = {Eo — Ex, By — Eg, ...} with & of them <0

v The k-th excited state = The index-k saddle point of £
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Electronic Ground and Excited States

Photo-induced applications Turro, Ramamurthy, Scaiano '09; Balzani, Ceroni, Juris '14; Mai, Gonzalez '20

e T o o

Metastable state 1 Excited state Metastable state 2

Fig. 3. Photochemical reactions
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Electronic Ground and Excited States
Photo-induced applications Turro, Ramamurthy, Scaiano '09; Balzani, Ceroni, Juris '14; Mai, Gonzalez '20
Curse of dimensionality

1
Z ———— ~»  Many-body SE is not decomposable
1<i<j<N i — 7]

Caffeine molecule CgH19N4O4
N =102, M =24
L 306-dim problem @

Fig. 4. Coffee and the caffeine molecule (cr. Wikipedia)
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Approximate Levels of Theory in Quantum Chemistry (QC)

Geometrical idea behind variational approximations

Tz w(x) =Ty

isometric embedding

Parameter manifold Exact theory manifold

Fig. 5. Isometric embedding from the parameter manifold to the exact theory manifold

¢ Finding suitable embedded Riemannian submanifolds of Afexact
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Approximate Levels of Theory in Quantum Chemistry (QC)

» Wavefunction methods
— Hartree-Fock (HF) methods tarree 28 Fock 30

L Grassmann manifold

MM = Gry(C™) := {P € C[2 ™ | P? = P* = P, rank(P) = N}

herm

where ny, € N denotes the number of basis functions

Variants: restricted/unrestricted /restricted open-shell /generalized HF, ...
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Approximate Levels of Theory in Quantum Chemistry (QC)

» Wavefunction methods

— HF methods ~~» M"Y
— Post-HF methods: full configuration-interaction (FCI)

L Projective space M ! := P(S{*t ™), where ne; := ()

Others: truncated Cl, coupled cluster methods, Mgller-Plesset perturbation theory, ...
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Approximate Levels of Theory in Quantum Chemistry (QC)

» Wavefunction methods

— HF methods ~~» M'F
— Post-HF methods: FCI ~ MC!
— Multi-reference methods: complete active space self-consistent field (CASSCF) roos etal. ‘50

L MOAS .= (Sg“eﬁl X Unp)) /[ (UD) X U(ning) X U(nact) X UMb — Ning — Nact) )
where Nint, Nact € N (nint <N < Nint + Nact < nb)! Ndet = (Nia;:nt)

Others: multi-reference Cl/coupled cluster/perturbation theory, ...
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Approximate Levels of Theory in Quantum Chemistry (QC)

» Wavefunction methods

— HF methods ~~» M"Y
— Post-HF methods: FCl ~» AMFCI
— Multi-reference methods: CASSCF ~» MCAS

> Density functional theory (DFT) Hohenberg, Kohn '64; Kohn, Sham '65
— Mean-field model + Semilocal exchange-correlation functionals

L Grassmann manifold MPFT .= AHF
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Approximate Levels of Theory in Quantum Chemistry (QC)

» Wavefunction methods

— HF methods ~~» M"Y
— Post-HF methods: FCl ~» AMFCI
— Multi-reference methods: CASSCF ~» MCAS

» Density functional theory (DFT) ~» MPFT
» Other theories not covered by this talk

— Quantum Monte Carlo wcwilan 65
— Many-body Green's function metods Lutinger. ward 60
— Semi-empirical and machine learning force fields Thiel'14: von Lilienfeld et al. 20

&5 More details in Laura’s talk
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Approximate Levels of Theory in Quantum Chemistry (QC)

Consequence of nonlinearity — Stationary conditions

» Stationary condition in the exact theory (Mact)
0=gradyeac: ) = [, [T, H] < HY =)V
» Stationary condition in approximate theories (w(M) C Me*act)
0=grad, vy €M) = [[,[[, )] & Hp@ = Tr(AT)¥
where Hp := Projr o Ho Projp is the Hamiltonian projected onto Trm(M)

. . approximation . .
Linear eigenvalue problem Nonlinear eigenvalue problem

theories
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Approximate Levels of Theory in Quantum Chemistry (QC)

Consequence of approximations — Critical points

/\/—\ E(F) with T e Mexact
(excited states = saddle points on AM¥act)

Fig. 6. Saddle points of approximations
(cr. Laura)
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Approximate Levels of Theory in Quantum Chemistry (QC)

Consequence of approximations — Critical points

ET) with T en(M)
(excited states & saddle points on 7(M))

& Index mismatch, “spurious” saddle points

Fig. 6. Saddle points of approximations
(cr. Laura)
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Approximate Levels of Theory in Quantum Chemistry (QC)

Consequence of approximations — Critical points

ET) with T en(M)
(excited states & saddle points on 7(M))

& Index mismatch, “spurious” saddle points

Exhaust the saddle points on M

Analyze the associated states by QC techniques

Fig. 6. Saddle points of approximations
(cr. Laura)
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Existing Methods for Computing Excited States

Difficulties in finding saddle points

L

Ny ni g
""nm'm

0y,
i),
"’"l’l’l’l’l’ll

Fig. 7. Instability of saddle points

Example. f(z,y) = 2% — y?, M = R?
5 (0,0) is an index-1 saddle point

(#(0),5(0)) = (=1,0)

| gradient flow

z(t)=—e 2t =0, y(t) =0
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Existing Methods for Computing Excited States

Difficulties in finding saddle points
Example. f(z,y) = 2% — y?, M = R?
5 (0,0) is an index-1 saddle point

Slightly perturbed

’ (#(0),5(0)) = (=1, —¢)
| gradient flow
z(t) = —e 2 =0, y(t) = —c-e* - —o0

Fig. 7. Instability of saddle points
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Existing Methods for Computing Excited States

Difficulties in finding saddle points
Example. f(z,y) = 2% — y?, M = R?
5 (0,0) is an index-1 saddle point

Slightly perturbed

’ (2(0),9(0)) = (=1, —¢)
| gradient flow

z(t) = —e 2 50, yt) = —e- ¥ - —0

@ |Instability of optimization methods

Fig. 7. Instability of saddle points @ Lack of a global merit function
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Existing Methods for Computing Excited States (QC)

State-specific methods
» (QuaSi—)NeWton direct optimization Cerjan, Miller '81; Jensen, Jergensen '84

& Instability outside attractive regions, expensive calculations
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Existing Methods for Computing Excited States (QC)

State-specific methods

» (QuaSi—)NeWton direct optimization Cerjan, Miller '81; Jensen, Jergensen '84
> ASCF (for HF & DFT), Simp|e root selection (for CASSCF) Jones, Gunnarsson '89

- Maximum overlap method Gilbert, Besley, Gill '08; Tran, Shea, Neuscamman '19;
— State-targeted energy projection (for HF & DFT) carter-Fenk, Heroert 20: ..

L Convergence issue, the tracked “index” # saddle point index
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Existing Methods for Computing Excited States (QC)

State-specific methods

» (QuaSi—)NeWton direct optimization Cerjan, Miller '81; Jensen, Jergensen '84
> ASCF (for HF & DFT), Simp|e root selection (for CASSCF) Jones, Gunnarsson '89

- Maximum overlap method Gilbert, Besley, Gill '08; Tran, Shea, Neuscamman '19;
— State-targeted energy projection (for HF & DFT) carter-Fenk, Heroert 20: ..

» Square gradient minimization rat rHead-Gordon 20
» Generalized variational principles Shea, Gwin, Neuscamman '20; Hanscam, Neuscamman '22;

& Spurious solutions, expensive calculations, lack of a priori knowledge
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Existing Methods for Computing Excited States (QC)

State-specific methods

» (QuaSi—)NeWton direct optimization Cerjan, Miller '81; Jensen, Jergensen '84
> ASCF (for HF & DFT), Simp|e root selection (for CASSCF) Jones, Gunnarsson '89

- Maximum overlap method Gilbert, Besley, Gill '08; Tran, Shea, Neuscamman '19;
— State-targeted energy projection (for HF & DFT) carter-Fenk, Heroert 20: ..

» Square gradient minimization rat rHead-Gordon 20

» Generalized variational principles Shea, Gwin, Neuscamman '20; Hanscam, Neuscamman '22;

Other methods in QC
» Orthogona|ity-ConStrained methods Bustard, Jafe 70 Levy, Nagy '99; Surjan '00; Yalouz, Robert '23
> Linear response theory Olsen, Jargensen '85; Casida '95

» State-averaged methods verer veyers1 = Not aiming for saddle points on M
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Existing Methods for Computing Excited States (Math)

Zhang, Du '12; Gao, Leng, Zhou '15; Li, Lu, Yang '15; Yin, Huang, Zhang '22; Liu, Xie, Yuan '23

Manifolds with global regular level-set representations
M={xcR"|c(x) =0}, c:=(c1,...,¢p)"

where grad ¢(x) € RP*™ is of full row rank for any x € M
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Existing Methods for Computing Excited States (Math)

Zhang, Du '12; Gao, Leng, Zhou '15; Li, Lu, Yang '15; Yin, Huang, Zhang '22; Liu, Xie, Yuan '23

Manifolds with global regular level-set representations
M={xcR"|c(x) =0}, c:=(c1,...,¢p)"

Constrained saddle dynamics: for index-k saddle points

da k k
i (In - ;'ui'u,?>grad/vl flx) + ;vz (v?gradM f(m))

Fig. 8. Trajectory of dynamics
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Existing Methods for Computing Excited States (Math)

Zhang, Du '12; Gao, Leng, Zhou '15; Li, Lu, Yang '15; Yin, Huang, Zhang '22; Liu, Xie, Yuan '23

Manifolds with global regular level-set representations
M={xeR"|c(x) =0}, c:= (cl,...,cp)T
Constrained saddle dynamics: for index-k saddle points

dax _ I k as T d ¢ (v d
a _*( n*;”wi )gra mF(@)+ D vi(v] grady f(@))

i=1 Rayleigh-Ritz minimization
i—1
d(;i = —(In — viv; ) Hesspq f(x)[vs] + 2 Zv]- (v]—-rHessM f(@)[v;]) Operator splitting
j=1
—grad c(x) " (grad c(z) - grad c(:c)T) -1 (Hess c(x) [%,vl])
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Existing Methods for Computing Excited States (Math)

Zhang, Du '12; Gao, Leng, Zhou '15; Li, Lu, Yang '15; Yin, Huang, Zhang '22; Liu, Xie, Yuan '23

Manifolds with global regular level-set representations
M={xcR"|c(x) =0}, c:=(c1,...,¢p)"

Constrained saddle dynamics: for index-k saddle points

de I k T d ¢ (v orad
a _*( n*;“zm )gra s F(@)+ D vi(v] grad y f(@))

=1
dv; _ I T H 22.71 TH .
T —( n — Viv; ) essp f(@)[vi] + Zlvj(vj ess f(w)[vj])
=
_ d . .
— grad C(w)T(grad c(x) - grad c(w)T) 1 <Hess c(x) [?:::7”1}) Fig. 9. Varying tangent space
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Existing Methods for Computing Excited States (Math)

Zhang, Du '12; Gao, Leng, Zhou '15; Li, Lu, Yang '15; Yin, Huang, Zhang '22; Liu, Xie, Yuan '23

Manifolds with global regular level-set representations
M={xcR"|c(x) =0}, c:=(c1,...,¢p)"

Constrained saddle dynamics: for index-k saddle points

dax _ I k as T d - (v d
a _*( n*;”zm )gra mF(@)+ D vi(v] grady f(@))

=1
du; i—1
dtz =—(In— vi'v;r)HessM f(®)[vi] +2 Z v; (vJTHessM f(=)[v;])
j=1
_ d . .
— grad c(:l:)T (grad c(x) - grad C(w)T) 1 (Hess c(x) [T‘:,m]) Fig. 9. Varying tangent space

Restriction to special cases (e.g., flat space, sphere, Stiefel)

11 /25



Constrained Saddle Dynamics (CSD) on General Riemannian Manifolds

Index-1 case
» x-dynamics

da

E(t) = —(Idg) — 20(t)v(t) Ngrad, f(z(t)) ~ w(t) e TeyM
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Constrained Saddle Dynamics (CSD) on General Riemannian Manifolds

Index-1 case

» x-dynamics: %(t) = —(Idg) — 2v(t)v(t) " grad , f(x(t))
» wv-dynamics:
) = -5 (Projy (v(0)
dv

= & (Projyu)) (0(1)) + Proj, <E(t))

dov

— o (520 000) ) + Proty (520
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Constrained Saddle Dynamics (CSD) on General Riemannian Manifolds

Index-1 case
> a-dynamics: %(t) = (dgg — 20(t)o(H) grad (2 (1))
» wv-dynamics:

d d .
5 (0 = 5 (Proj, (v(1)))

= & (Projyu)) (0(1)) + Proj, (%(t))

— L <%f @), v(t)) + Proj,, (%(t))

Fig. 10. Second fundamental form

I, : TyM x TpM — NipM: second fundamental form of M at x
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Constrained Saddle Dynamics (CSD) on General Riemannian Manifolds

Index-1 case
d
> 2-dynamics: Tf(t) — —(Idg) — 20(t)o(t) T)grad , f(x(t))
» v-dynamics:

dv da ) dv
E(t) = g (dt(t)’ ’U(t)> + Proj,q ((lt(t)) € NpyiyM & Ty M

v
varying tangent space tracking the lowest eigvec.

Following the Euler-Lagrange equation of the Rayleigh-Ritz minimization

min (v, Hessyq f(x)[0]) (dv) .
v ~ Proj,| — | = —(Idg —vv )Hessp f(x)|v
st BeTeM, |8 =1 i\ gz ) =~k JHess vy f ()[v]
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Constrained Saddle Dynamics (CSD) on General Riemannian Manifolds
Index-1 case

S (1) = ~(idagy — 20(0)0 (1) erad y, £ (1)
0 = ~ 1y = o)) ) Hessae F(@()[o(0)] + T (5701000
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Constrained Saddle Dynamics (CSD) on General Riemannian Manifolds
Index-1 case

S (1) = ~(idagy — 20(0)0 (1) erad y, £ (1)
0 = ~ 1y = o)) ) Hessae F(@()[o(0)] + T (5701000

Index-k case: let V := (vy,...,v;) € Stgp(TeM)
dx

E(t) = —(Idg@) — 2V ()V (t) "grad , f(z(t))
C}i’l;i (t) = —(Idg) — V)V (t) ") Hess pq f(2(t))[vi(t)] + gy (‘Z(m vi(t)>
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Constrained Saddle Dynamics (CSD) on General Riemannian Manifolds

Another perspective: dynamics on the Grassmann bundle of TM

Stiefel and Grassmann bundles of TM Lee 12
Stk(T./\/l) ::{(:I}, V) ’ re M, Ve Stk(TwM)}
I ~ by O(k)

Gri(TM) :={(=,[V]) |z € M, [V] € Grp(TzM)}

are themselves embedded submanifolds of proper ambient spaces
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Constrained Saddle Dynamics (CSD) on General Riemannian Manifolds

Another perspective: dynamics on the Grassmann bundle of TM

Stiefel and Grassmann bundles of TAM (e 12
St (TM) :=={(2,V) | £ € M, V € St(TaM)}
§ ~ by O(k)
Gri(TM) :={(=,[V]) |z € M, [V] € Grp(ToM)}

CSD can be rewritten as

d(z, [V])

v (t) = h(z(t), [V(1)]) € T@w),ve)Gre(TM)

for some vector field A on Gry(TM)
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Linear Stability of the CSD

Suppose that f is C3, (x*,[V*]) € Gry(TM), and Hessnq f(x*) is nondegenerate.

Then (x*,[V*]) is a linearly steady state of the CSD if and only if
@ x* is an index-k saddle point of f on M; and

® V™ spans the lowest k-dimensional invariant subspace of Hesspq f(x*).

& Weaker assumptions: o(Hessyg f(2*)) = {X*, ..., A5} v tuang, znang 22
AT <A < <A <O< A S SA 0 AT< <A <0<

L Treat (x, [V]) € Grp(TM) rather than (z,V) € Sti(TM)
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Discretization of the CSD

Forward Euler discretization: with (2 [V(0)]) € Gr,(TM) and 5 > 0

dY = —(Idw — 2V VD) grad,, f(z®)
dE,’? = —(Id,u — V(t)(V(t))T)HessM f(:l)(t )[v Z(t)] + norn€l part

A retraction on GI"[L(TM) for any ((x, [V]), (d:L" dv)) I~ T(Grk(TM)) Edelman, Arias, Smith '98

Retr (G”E(?)M)((dm?dv)) = <Retr/m\4(dw)7ProjRetré”(dm)(VU COS(E)UT + QSin(E)UT))

Proj,(dv) = QXUT, Q € Stx(R"), ¥ := diag(o1, . ..,01) € R¥* U € O(k)
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Local Convergence Analysis of the Discretized CSD

Suppose that f is C3, £* € M is an index-k saddle point of f on M, Hessp f(x*) is
nondegenerate, and V* € Sty (T4« M) spans the lowest k-dimensional invariant subspace of
Hess v f(:c*). Let {(z®,[V])} be the iterate sequence by the discretized CSD.

Then {(z®, [V®])} linearly converges to (z*, [V*]) if
@ the step size 7 is sufficiently small; and

@ the initial point ((©), [V(9]) is sufficiently close to (x*, [V*]).

& The first local convergence results in constrained settings
& Weaker assumptions by working on Grk(TM)' eigenvalues ... +
IVOVNT — VNV (@) T | <a<1, Vi

with V() spanning the exact subspace Luoetal. 22
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Local Convergence Rates of the Discretized CSD

D) = {Af A

= max / min |A]|

I\l

Condition numbers: o(Hesspy f(x
> x-residual: max {|1 — Ak,
» V-residual: max{‘l )‘k+1
& /\;(nax o max{i)‘jlk‘ATL}
€T - . bl
)\?nm mlll{—Az, AZ@—&-I}
. Ar— AT
g )
N — N
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Local Convergence Rates of the Discretized CSD

Condition numbers: o(Hesspy f(x*)) = {A}],..., A5} Aax / min °= max / min |AY|
1<i<n

> x-residual: max {|1 —nAL, |, [1— max’}
» V-residual: max {|1— N(Nexr — )5 n(Ax — /\T)H

P A?nax _ max{ )‘* )‘*} best 2

"5 N min{—Ap AL} e i {=AE, ALy )+ max{—A], AL}
)‘* — AI best 2
Ry =~ ﬁ, v * * *
Neg1 — Mk B R Y
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Local Convergence Rates of the Discretized CSD

Condition numbers: o(Hesspy f(x*)) = {A},..., A5} AF

max /min - Max / min |\

1<i<n
. max{=A} A5}
» x-residual: max {l]. - 77)\m1n| — ﬁA?naX’} M Ry N W
An =AY
» V-residual: max {|1 — N(Negr — A [T = (A5 = A7) !}wm/wm

Example. A € REE, f(P) = Tr(PA) on Gry(RY) with p > 1

sym
" e Aga(A)
» Condition number at the global minimizer: Ao (A)

/\1]<H(3%S M f( mm)) - A)\Z}(‘4> = )\7(‘4) o A}(‘A) >0,

= AXg1(A), Abin = Adpyi1p(A) (a-k.a. eigengap)

lll 1 X
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Local Convergence Rates of the Discretized CSD

Condition numbers: o(Hesspy f(x*)) = {A},..., A5} AF

max /min - Max / min |\

1<i<n
. max{=A} A5}
» x-residual: max {l]. - 77)\m1n| — ﬁA?naX’} M Ry N W
> V-residual: max {|1 —n(Xg,, — Ap)|s |1 — (X5 — A% !}wm/w%
k+1 k

Example. A € RE4, f(P) = Tr(PA) on Gry(R?) with p > 1

sym
" e Aga(A)
» Condition number at the global minimizer: Ao (A)

» Condition number at the index-1 saddle point: L rres—rr AA/\)‘Tl(‘L‘()A) A ()]
p,P D p P P

=p4+ip,p+2,..., d

o = AN;; (A),
\Z]( eSS\/lj( sl(l(“()) /\le< ) /:1‘])71p+1%

5 Anax = A1 (A4), A = min{AN, p1(A4), Adpi1p(A), Adpi2p1(A)}

max
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Local Convergence Rates of the Discretized CSD

Condition numbers: o(Hesspy f(x*)) = {A}],..., A5} Aax /min ©= max / min |\}|
1<i<n
» x-residual: max {|1 — A il n)\maX’} ~ Rg R %%
» V-residual: max {|1 — N(Negr — ) [T —n(A; =AY !}wm/w%
k+1 k

Example. A € RE4, f(P) = Tr(PA) on Gry(R?) with p > 1

sym’
" e Aga(A)
» Condition number at the global minimizer: Ao (A)

» Condition number at the index-1 saddle point: rry——r AA;‘i’ll(A()A) A ()]
p,P P p P P

More nondegeneracies needed & Worse conditioned!
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Numerical Results — Linear Eigenvalue Problems

Problem description: For any A € R%2X", find the saddle points of

Sym
F(X) = %Tr(XTAX) with X € St,(R")
or

1 ,
f(P):= iTr(PA) with P e Gr,(R")
Explicit solutions: A = Udiag(\1,...,A\,)U T, U € O(n), for the index-1 saddle points

X* = [U',lip—la U'7p+1]7 P* = X*(X*)T) f(X*) = f = ZA + )‘p+1
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Numerical Results — Linear Eigenvalue Problems

Importance of non-redundant parameterization
> n=064, p=38, £ =1.01, ng; = 2.0, ng: =4.0
» Searching for index-1 saddle points
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Numerical Results — Linear Eigenvalue Problems

Importance of non-redundant parameterization

Relative residual

Residual vs Iteration

Function value vs Iteration

Estimated lowest eigenvalue vs Iteration

3.0 —=—  Grassmann 0-000 (ﬁ ‘
|
—+— Stiefel .
g —0.005
Tg
222 20010
s “ 0.0000 =
‘ \
Z — 5
o £ 005 —0.0025
—— Grassmann (Pos) 2215 00 = 002 R 00
--+-= Grassmann (Dir) 2.4 £
=
—4— Stiefel (Pos) \\. = 0,025 —— Grassmann
4= Stiefel (Dir) ——  Stiefel
; 22 ~0.030
250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250
Iteration Tteration Tteration

Fig. 11. Convergence curves of algorithms running on the Grassmann and Stiefel manifolds
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Numerical Results — Linear Eigenvalue Problems

Importance of non-redundant parameterization

Table 1. Empirical success rates (100 trials) around the global minimizer and index-1 saddle point

Algorith ‘ Perturbation from global minimizer ‘ Perturbation from saddle point
gorithms

10 1072 100t 10° 10t | 107% 1072 10t 109 10!

Grassmann | 100% 100% 100% 100% 100% | 100% 100% 100% 100% 100%
Stiefel 0% 0% 0% 29%  33% | 100%  98%  59%  25%  30%

The Stiefel version fails often due to parameterization redundancy
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Numerical Results — Linear Eigenvalue Problems

Influence of problem data on performance
» n e {10,20,...,80}, p€{2,3,...,8}, £ € {1.0001,1.001, 1.01,1.05}
> Using the estimated best step sizes nbest, pbest
» Searching for index-1 saddle points
-1
L2 - 1)

Estimated condition number: k =
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Numerical Results — Linear Eigenvalue Problems

Influence of problem data on performance

Averaged iteration number Condition number

5000

800
4000

600
3000

2000 100

1000 200

Fig. 12. Average iteration numbers (10 trials) and estimated condition numbers (£ = 1.05)

& Good agreement between iteration numbers and estimated condition numbers
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Numerical Results — Electronic Excited-State Calculations

Results on the Hy; molecule
» Restricted HF/6-31G (RHF): Gri(R*), dim =3
> Restricted CASSCF (RCAS) (2,2)/6-31G: (S* x O(4))/(0(2) x O(2)), dim =7
» FCI (reference): S'°, dim = 15

s, dissociating

@ @

4.0 Bohr

Fig. 13. Ha molecule with a varying bond length
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Numerical Results — Electronic Excited-State Calculations

RCAS(2.2) and RHF SPs vs FCI states

1509 1 —— A FCT
Ay FCI
| . RCAS

12,5 0‘ 5 o RHF
| J\H(2s?) - HF

100 | 11t b H)

Z 4= HAN 281

T oA T uod) e

5

g %\ bo—e—e—a—g 4— H(1s") NI’

= 50 —14-s-t.2 2% 4 H(Is") - H(1s)

0 1 2 3 4
Bond length (a.u.)

Fig. 14. Found saddle points of RCAS and
RHF (1,000 trials) vs FCI states

4 RHF (dim = 3) captures 3 ~ 4 FCl states
4 RCAS (dim = 7) captures all the FCI states
& Higher-index saddle points — Higher excitations
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Numerical Results — Electronic Excited-State Calculations

1A, FCI state vs RCAS(2,2) SPs 1A, FCI state vs RCAS(2,2) SPs 3A, FCI state vs RCAS(2,2) SPs
817 —— FCI1A, H e FCIL1A, 811 e FCI3A,
v RCAS index-1 6] o RCAS ground state s RCAS index-2
61 | | v RCAS index-1 6 ; RCAS index-3
H ’
— | 2 RCAS index-2 — |
249 =2
@2 =
! 2
% \
0 vvv 0 h_u \
m“?—vvvv@vvwv?vv?vv»vv’/vvv\wzcvv o 8 0 VY
0 1 2 3 1 0 1 2 3 ! 0 1 2 3 1
Bond length (a.u.) Bond length (a.u.) Bond length (a.u.)

Fig. 15. Projection of RCAS saddle points onto FCl states

‘4 Non-one-to-one correspondences: one RCAS — many FCl; many RCAS — one FCI
4 Swaps in RCAS indices with the bond length varying
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Take-Home Messages

» Electronics excited states as saddle points of the exact energy functional
» Variational approximate levels of theory on Riemannian manifolds
» Constrained saddle points of energy functionals in approximate theories

» Existing works: instability at saddle points, restriction to special manifolds
» A constrained saddle dynamics built on the Grassmann bundle geometry

— Local theoretical properties under weaker assumptions
— Non-redundant parameterization, ill condition
— Applications to standard benchmark molecules

<~ Reference for this talk: acXiv 2601.03931
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https://arxiv.org/pdf/2601.03931.pdf
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