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Time-Independent Many-Body Schrödinger Equation (SE)

Pauli '25; Schrödinger '26; Born, Oppenheimer '27
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

︸ ︷︷ ︸
ĤN,{RI}

≡:Ĥ

Ψ(r1, . . . , rN ) = EΨ(r1, . . . , rN )

◮ {RI}
M
I=1 ⊆ R3: prefixed nuclear configuration, with charges {zI}

M
I=1 ⊆ N+

◮ Ψ ∈ ∧NL2(R3;C): normalized antisymmetric wavefunction
◮ Ĥ: Hermitian electronic Hamiltonian
◮ E ∈ σ(Ĥ): energy associated with Ψ
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Time-Independent Many-Body Schrödinger Equation (SE)

Pauli '25; Schrödinger '26; Born, Oppenheimer '27
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≡:Ĥ

Ψ(r1, . . . , rN ) = EΨ(r1, . . . , rN )

Fig. 1. Water molecule (cr. CORDIS)

Example. Water molecule H2O
M = 3, N = 10, z1 = 8, z2 = z3 = 1

1 / 25



Electronic Ground and Excited States

Zhislin’s theorem Zhislin '60

If N ≤
∑M

I=1 zI (neutral or positively charged), then σ(Ĥ) looks like

· · ·

essential spectrum

E0 E1 E2 Σ

ground state Ψ⋆
0 excited states {Ψ⋆

k}k≥1

Fig. 2. Spectrum of Ĥ

💡 Excitation energies: E1 − E0, E2 − E0, . . .
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Electronic Ground and Excited States

Ground/excited states are critical points

E(Γ) := Tr(ĤΓ) with Γ ∈ Mexact := P
( N∧

L2(R3;C)

)

◮ Γ := ΨΨ∗: density matrix
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Electronic Ground and Excited States

Ground/excited states are critical points

E(Γ) := Tr(ĤΓ) with Γ ∈ Mexact := P
( N∧

L2(R3;C)

)

◮ Riemannian gradient and stationary condition

gradMexact E(Γ) = [Γ, [Γ, Ĥ]] = 0 ⇔ ĤΨ = E(Γ)Ψ (many-body SE)

◮ Spectrum of the Riemannian Hessian at the critical point Γ⋆
k := Ψ⋆

k(Ψ
⋆
k)

∗

σ
(
HessMexact E(Γ⋆

k)
)
= {E0 − Ek, E1 − Ek, . . .} with k of them < 0

💡 The k-th excited state = The index-k saddle point of E
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Electronic Ground and Excited States

Photo-induced applications Turro, Ramamurthy, Scaiano '09; Balzani, Ceroni, Juris '14; Mai, González '20; ...

Fig. 3. Photochemical reactions
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Electronic Ground and Excited States

Photo-induced applications Turro, Ramamurthy, Scaiano '09; Balzani, Ceroni, Juris '14; Mai, González '20; ...

Curse of dimensionality
∑

1≤i<j≤N

1

|ri − rj |
 Many-body SE is not decomposable

Fig. 4. Coffee and the caffeine molecule (cr. Wikipedia)

Caffeine molecule C8H10N4O2

N = 102, M = 24

306-dim problem 😱
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Approximate Levels of Theory in Quantum Chemistry (QC)

Geometrical idea behind variational approximations

Fig. 5. Isometric embedding from the parameter manifold to the exact theory manifold

💡 Finding suitable embedded Riemannian submanifolds of Mexact
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Approximate Levels of Theory in Quantum Chemistry (QC)

◮ Wavefunction methods
– Hartree-Fock (HF) methods Hartree '28; Fock '30

Grassmann manifold

MHF := GrN (Cnb) :=
{
P ∈ Cnb×nb

herm | P 2 = P ∗ = P, rank(P ) = N
}

where nb ∈ N denotes the number of basis functions
Variants: restricted/unrestricted/restricted open-shell/generalized HF, ...
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Approximate Levels of Theory in Quantum Chemistry (QC)

◮ Wavefunction methods
– HF methods  MHF

– Post-HF methods: full configuration-interaction (FCI)
Projective space MFCI := P

(
Sndet−1
C

)
, where ndet :=

(
nb
N

)

Others: truncated CI, coupled cluster methods, Møller-Plesset perturbation theory, ...
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Approximate Levels of Theory in Quantum Chemistry (QC)

◮ Wavefunction methods
– HF methods  MHF

– Post-HF methods: FCI  MFCI

– Multi-reference methods: complete active space self-consistent field (CASSCF) Roos et al. '80

MCAS :=
(
Sndet−1
C

× U(nb)
)
/
(
U(1)× U(nint)× U(nact)× U(nb − nint − nact)

)

where nint, nact ∈ N (nint < N < nint + nact < nb), ndet :=
(

nact
N−nint

)

Others: multi-reference CI/coupled cluster/perturbation theory, ...
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Approximate Levels of Theory in Quantum Chemistry (QC)

◮ Wavefunction methods
– HF methods  MHF

– Post-HF methods: FCI  MFCI

– Multi-reference methods: CASSCF  MCAS

◮ Density functional theory (DFT) Hohenberg, Kohn '64; Kohn, Sham '65

– Mean-field model + Semilocal exchange-correlation functionals
Grassmann manifold MDFT := MHF
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Approximate Levels of Theory in Quantum Chemistry (QC)

◮ Wavefunction methods
– HF methods  MHF

– Post-HF methods: FCI  MFCI

– Multi-reference methods: CASSCF  MCAS

◮ Density functional theory (DFT)  MDFT

◮ Other theories not covered by this talk
– Quantum Monte Carlo McMillan '65

– Many-body Green’s function metods Luttinger, Ward '60

– Semi-empirical and machine learning force fields Thiel '14; von Lilienfeld et al. '20; ...

🥳 More details in Laura’s talk
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Approximate Levels of Theory in Quantum Chemistry (QC)

Consequence of nonlinearity – Stationary conditions
◮ Stationary condition in the exact theory (Mexact)

0 = gradMexact E(Γ) = [Γ, [Γ, Ĥ]] ⇔ ĤΨ = E(Γ)Ψ

◮ Stationary condition in approximate theories (π(M) ( Mexact)

0 = gradπ(M) E(Γ) = [Γ, [Γ, ĤΓ]] ⇔ ĤΓΨ = Tr(ĤΓΓ)Ψ

where ĤΓ := ProjΓ ◦ Ĥ ◦ ProjΓ is the Hamiltonian projected onto TΓπ(M)

Linear eigenvalue problem approximation
−−−−−−−−→

theories
Nonlinear eigenvalue problem
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Approximate Levels of Theory in Quantum Chemistry (QC)

Fig. 6. Saddle points of approximations
(cr. Laura)

Consequence of approximations – Critical points

E(Γ) with Γ ∈ Mexact

(excited states = saddle points on Mexact)
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Approximate Levels of Theory in Quantum Chemistry (QC)

Fig. 6. Saddle points of approximations
(cr. Laura)

Consequence of approximations – Critical points

E(Γ) with Γ ∈ π(M)

(excited states ≈ saddle points on π(M))

Index mismatch, “spurious” saddle points

💡 Exhaust the saddle points on
💡 Analyze the associated states by QC techniques
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Approximate Levels of Theory in Quantum Chemistry (QC)

Fig. 6. Saddle points of approximations
(cr. Laura)

Consequence of approximations – Critical points

E(Γ) with Γ ∈ π(M)

(excited states ≈ saddle points on π(M))

Index mismatch, “spurious” saddle points

💡 Exhaust the saddle points on M

💡 Analyze the associated states by QC techniques
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Existing Methods for Computing Excited States

Difficulties in finding saddle points

Fig. 7. Instability of saddle points

Example. f(x, y) = x2 − y2, M = R2

(0, 0) is an index-1 saddle point

(x(0), y(0)) = (−1, 0)

⇓ gradient flow

x(t) = −e−2t → 0, y(t) ≡ 0
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Existing Methods for Computing Excited States

Difficulties in finding saddle points

Fig. 7. Instability of saddle points

Example. f(x, y) = x2 − y2, M = R2

(0, 0) is an index-1 saddle point

(x(0), y(0)) = (−1,−ε)

⇓ gradient flow

x(t) = −e−2t → 0, y(t) = −ε · e2t → −∞
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Existing Methods for Computing Excited States

Difficulties in finding saddle points

Fig. 7. Instability of saddle points

Example. f(x, y) = x2 − y2, M = R2

(0, 0) is an index-1 saddle point

(x(0), y(0)) = (−1,−ε)

⇓ gradient flow

x(t) = −e−2t → 0, y(t) = −ε · e2t → −∞

😢 Instability of optimization methods
😭 Lack of a global merit function
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Existing Methods for Computing Excited States (QC)

State-specific methods
◮ (Quasi-)Newton direct optimization Cerjan, Miller '81; Jensen, Jørgensen '84; ...

Instability outside attractive regions, expensive calculations
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Existing Methods for Computing Excited States (QC)

State-specific methods
◮ (Quasi-)Newton direct optimization Cerjan, Miller '81; Jensen, Jørgensen '84; ...

◮ ∆SCF (for HF & DFT), simple root selection (for CASSCF) Jones, Gunnarsson '89; ...

– Maximum overlap method Gilbert, Besley, Gill '08; Tran, Shea, Neuscamman '19; ...

– State-targeted energy projection (for HF & DFT) Carter-Fenk, Herbert '20; ...

Convergence issue, the tracked “index” 6= saddle point index
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Existing Methods for Computing Excited States (QC)

State-specific methods
◮ (Quasi-)Newton direct optimization Cerjan, Miller '81; Jensen, Jørgensen '84; ...

◮ ∆SCF (for HF & DFT), simple root selection (for CASSCF) Jones, Gunnarsson '89; ...

– Maximum overlap method Gilbert, Besley, Gill '08; Tran, Shea, Neuscamman '19; ...

– State-targeted energy projection (for HF & DFT) Carter-Fenk, Herbert '20; ...

◮ Square gradient minimization Hait, Head-Gordon '20; ...

◮ Generalized variational principles Shea, Gwin, Neuscamman '20; Hanscam, Neuscamman '22; ...

Spurious solutions, expensive calculations, lack of a priori knowledge
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Existing Methods for Computing Excited States (QC)

State-specific methods
◮ (Quasi-)Newton direct optimization Cerjan, Miller '81; Jensen, Jørgensen '84; ...

◮ ∆SCF (for HF & DFT), simple root selection (for CASSCF) Jones, Gunnarsson '89; ...

– Maximum overlap method Gilbert, Besley, Gill '08; Tran, Shea, Neuscamman '19; ...

– State-targeted energy projection (for HF & DFT) Carter-Fenk, Herbert '20; ...

◮ Square gradient minimization Hait, Head-Gordon '20; ...

◮ Generalized variational principles Shea, Gwin, Neuscamman '20; Hanscam, Neuscamman '22; ...

Other methods in QC
◮ Orthogonality-constrained methods Bustard, Jaffe '70; Levy, Nagy '99; Surján '00; Yalouz, Robert '23; ...

◮ Linear response theory Olsen, Jørgensen '85; Casida '95; ...

◮ State-averaged methods Werner, Meyer '81; ... Not aiming for saddle points on M
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Existing Methods for Computing Excited States (Math)

Zhang, Du '12; Gao, Leng, Zhou '15; Li, Lu, Yang '15; Yin, Huang, Zhang '22; Liu, Xie, Yuan '23

Manifolds with global regular level-set representations

M = {x ∈ Rn | c(x) = 0}, c := (c1, . . . , cp)
⊤

where grad c(x) ∈ Rp×n is of full row rank for any x ∈ M
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Existing Methods for Computing Excited States (Math)

Zhang, Du '12; Gao, Leng, Zhou '15; Li, Lu, Yang '15; Yin, Huang, Zhang '22; Liu, Xie, Yuan '23

Manifolds with global regular level-set representations

M = {x ∈ Rn | c(x) = 0}, c := (c1, . . . , cp)
⊤

Constrained saddle dynamics: for index-k saddle points

dx
dt

= −

(
In −

k∑

i=1

viv
⊤
i

)
gradM f(x) +

k∑

i=1

vi

(
v
⊤
i gradM f(x)

)

Fig. 8. Trajectory of dynamics
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Existing Methods for Computing Excited States (Math)

Zhang, Du '12; Gao, Leng, Zhou '15; Li, Lu, Yang '15; Yin, Huang, Zhang '22; Liu, Xie, Yuan '23

Manifolds with global regular level-set representations

M = {x ∈ Rn | c(x) = 0}, c := (c1, . . . , cp)
⊤

Constrained saddle dynamics: for index-k saddle points

dx
dt

= −

(
In −

k∑

i=1

viv
⊤
i

)
gradM f(x) +

k∑

i=1

vi

(
v
⊤
i gradM f(x)

)

dvi

dt
= −

(
In − viv

⊤
i

)
HessM f(x)[vi] + 2

i−1∑

j=1

vj

(
v
⊤
j HessM f(x)[vj ]

)

− grad c(x)⊤
(
grad c(x) · grad c(x)⊤

)−1
(

Hess c(x)
[

dx
dt

,vi

])

Rayleigh-Ritz minimization
Operator splitting
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Existing Methods for Computing Excited States (Math)

Zhang, Du '12; Gao, Leng, Zhou '15; Li, Lu, Yang '15; Yin, Huang, Zhang '22; Liu, Xie, Yuan '23

Manifolds with global regular level-set representations

M = {x ∈ Rn | c(x) = 0}, c := (c1, . . . , cp)
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Fig. 9. Varying tangent space
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Zhang, Du '12; Gao, Leng, Zhou '15; Li, Lu, Yang '15; Yin, Huang, Zhang '22; Liu, Xie, Yuan '23

Manifolds with global regular level-set representations
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Fig. 9. Varying tangent space

Restriction to special cases (e.g., flat space, sphere, Stiefel)
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Constrained Saddle Dynamics (CSD) on General Riemannian Manifolds

Index-1 case
◮ x-dynamics

dx
dt (t) = −(Idx(t) − 2v(t)v(t)⊤)gradM f(x(t))  v(t) ∈ Tx(t)M

12 / 25



Constrained Saddle Dynamics (CSD) on General Riemannian Manifolds

Index-1 case
◮ x-dynamics: dx

dt (t) = −(Idx(t) − 2v(t)v(t)⊤)gradM f(x(t))

◮ v-dynamics:

dv
dt (t) =

d
dt

(

Proj
x(t)(v(t))

)

=
d
dt

(

Proj
x(t)

)

(v(t)) + Proj
x(t)

(

dv
dt (t)

)

= II
x(t)

(

dx
dt (t),v(t)

)

+ Proj
x(t)

(

dv
dt (t)

)

Fig. 10. Second fundamental form

II T T N : second fundamental form of at
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Constrained Saddle Dynamics (CSD) on General Riemannian Manifolds

Index-1 case
◮ x-dynamics: dx

dt (t) = −(Idx(t) − 2v(t)v(t)⊤)gradM f(x(t))

◮ v-dynamics:

dv
dt (t) =

d
dt

(

Proj
x(t)(v(t))

)

=
d
dt

(

Proj
x(t)

)

(v(t)) + Proj
x(t)

(

dv
dt (t)

)

= II
x(t)

(

dx
dt (t),v(t)

)

+ Proj
x(t)

(

dv
dt (t)

)

Fig. 10. Second fundamental form

IIx : TxM× TxM → NxM: second fundamental form of M at x
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Constrained Saddle Dynamics (CSD) on General Riemannian Manifolds

Index-1 case
◮ x-dynamics: dx

dt (t) = −(Idx(t) − 2v(t)v(t)⊤)gradM f(x(t))

◮ v-dynamics:

dv
dt (t) = IIx(t)

(
dx
dt (t),v(t)

)

︸ ︷︷ ︸
varying tangent space

+ Projx(t)
(

dv
dt (t)

)

︸ ︷︷ ︸
tracking the lowest eigvec.

∈ Nx(t)M⊕ Tx(t)M

Following the Euler-Lagrange equation of the Rayleigh-Ritz minimization

min
ṽ

〈ṽ,HessM f(x)[ṽ]〉

s. t. ṽ ∈ TxM, ‖ṽ‖ = 1
 Projx

(
dv
dt

)
= −

(
Idx − vv

⊤
)
HessM f(x)[v]
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Constrained Saddle Dynamics (CSD) on General Riemannian Manifolds

Index-1 case




dx
dt (t) = −(Idx(t) − 2v(t)v(t)⊤)gradM f(x(t))

dv
dt (t) = −

(
Idx(t) − v(t)v(t)⊤

)
HessM f(x(t))[v(t)] + IIx(t)

(
dx
dt (t),v(t)

)

Index- case: let St T

d
d Id grad
d
d Id Hess II d

d
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Constrained Saddle Dynamics (CSD) on General Riemannian Manifolds

Index-1 case




dx
dt (t) = −(Idx(t) − 2v(t)v(t)⊤)gradM f(x(t))

dv
dt (t) = −

(
Idx(t) − v(t)v(t)⊤

)
HessM f(x(t))[v(t)] + IIx(t)

(
dx
dt (t),v(t)

)

Index-k case: let V := (v1, . . . ,vk) ∈ Stk(TxM)





dx
dt (t) = −(Idx(t) − 2V (t)V (t)⊤)gradM f(x(t))

dvi
dt (t) = −

(
Idx(t) − V (t)V (t)⊤

)
HessM f(x(t))[vi(t)] + IIx(t)

(
dx
dt (t),vi(t)

)
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Constrained Saddle Dynamics (CSD) on General Riemannian Manifolds

Another perspective: dynamics on the Grassmann bundle of TM

Stiefel and Grassmann bundles of TM Lee '12

Stk(TM) :=
{(

x, V
)
| x ∈ M, V ∈ Stk(TxM)

}

⇓ ∼ by O(k)

Grk(TM) :=
{(

x, [V ]
)
| x ∈ M, [V ] ∈ Grk(TxM)

}

are themselves embedded submanifolds of proper ambient spaces
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Constrained Saddle Dynamics (CSD) on General Riemannian Manifolds

Another perspective: dynamics on the Grassmann bundle of TM

Stiefel and Grassmann bundles of TM Lee '12

Stk(TM) :=
{(

x, V
)
| x ∈ M, V ∈ Stk(TxM)

}

⇓ ∼ by O(k)

Grk(TM) :=
{(

x, [V ]
)
| x ∈ M, [V ] ∈ Grk(TxM)

}

CSD can be rewritten as

d(x, [V ])

dt (t) = h(x(t), [V (t)]) ∈ T(x(t),[V (t)])Grk(TM)

for some vector field h on Grk(TM)
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Linear Stability of the CSD

Theorem 1
Suppose that f is C3, (x⋆, [V ⋆]) ∈ Grk(TM), and HessM f(x⋆) is nondegenerate.

Then (x⋆, [V ⋆]) is a linearly steady state of the CSD if and only if
(1) x⋆ is an index-k saddle point of f on M; and
(2) V ⋆ spans the lowest k-dimensional invariant subspace of HessM f(x⋆).

🤩 Weaker assumptions: σ(HessM f(x⋆)) = {λ⋆
1, . . . , λ

⋆
n} Yin, Huang, Zhang '22

λ⋆
1 < λ⋆

2 < · · · < λ⋆
k < 0 < λ⋆

k+1 ≤ · · · ≤ λ⋆
n  λ⋆

1 ≤ · · · ≤ λ⋆
k < 0 < · · ·

Treat (x, [V ]) ∈ Grk(TM) rather than (x, V ) ∈ Stk(TM)
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Discretization of the CSD

Forward Euler discretization: with (x(0), [V (0)]) ∈ Grk(TM) and η > 0

d
(t)
x := −(Id

x(t) − 2V (t)(V (t))⊤)gradM f(x(t))

d
(t)
vi

:= −(Id
x(t) − V (t)(V (t))⊤)HessM f(x(t))[v

(t)
i ] + normal part❌

(
x
(t+1), [V (t+1)]

)
:= RetrGrk(TM)

(x(t),[V (t)])

((
ηd

(t)
x , ηd

(t)
V

))
✅

A retraction on Grk(TM): for any
(
(x, [V ]), (dx,dV )

)
∈ T

(
Grk(TM)

)
Edelman, Arias, Smith '98

RetrGrk(TM)
(x,[V ])

(
(dx,dV )

)
:=

(
RetrMx (dx),ProjRetrM

x
(dx)

(
V U cos(Σ)U⊤ +Q sin(Σ)U⊤

))

Projx(dV ) = QΣU⊤, Q ∈ Stk(Rn), Σ := diag(σ1, . . . , σk) ∈ Rk×k
+ , U ∈ O(k)
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Local Convergence Analysis of the Discretized CSD

Theorem 2
Suppose that f is C3, x⋆ ∈ M is an index-k saddle point of f on M, HessM f(x⋆) is
nondegenerate, and V ⋆ ∈ Stk(Tx

⋆M) spans the lowest k-dimensional invariant subspace of
HessM f(x⋆). Let {(x(t), [V (t)])} be the iterate sequence by the discretized CSD.

Then {(x(t), [V (t)])} linearly converges to (x⋆, [V ⋆]) if
1 the step size η is sufficiently small; and
2 the initial point (x(0), [V (0)]) is sufficiently close to (x⋆, [V ⋆]).

🤩 The first local convergence results in constrained settings
🤩 Weaker assumptions by working on Grk(TM): eigenvalues ... +

‖V (t)(V (t))⊤ − V (x(t))V (x(t))⊤‖ ≤ α < 1, ∀ t❌

with V (x) spanning the exact subspace Luo et al. '22
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Local Convergence Rates of the Discretized CSD

Condition numbers: σ(HessM f(x⋆)) = {λ⋆
1, . . . , λ

⋆
n}, λ⋆

max /min := max / min
1≤i≤n

|λ⋆
i |

◮ x-residual: max
{∣∣1− ηλ⋆

min
∣∣,
∣∣1− ηλ⋆

max
∣∣}

◮ V -residual: max
{∣∣1− η(λ⋆

k+1 − λ⋆
k)
∣∣,
∣∣1− η(λ⋆

n − λ⋆
1)
∣∣}

κx ≈
λ⋆

max
λ⋆

min
=

max{−λ⋆
1, λ

⋆
n}

min{−λ⋆
k, λ

⋆
k+1}

,

best
min max

κV ≈
λ⋆
n − λ⋆

1

λ⋆
k+1 − λ⋆

k

,

best
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Local Convergence Rates of the Discretized CSD

Condition numbers: σ(HessM f(x⋆)) = {λ⋆
1, . . . , λ

⋆
n}, λ⋆

max /min := max / min
1≤i≤n

|λ⋆
i |

◮ x-residual: max
{∣∣1− ηλ⋆

min
∣∣,
∣∣1− ηλ⋆

max
∣∣}

◮ V -residual: max
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Example. A ∈ Rd×d
sym , f(P ) = Tr(PA) on Grp(Rd) with p > 1

◮ Condition number at the global minimizer: ∆λd,1(A)
∆λp+1,p(A)

λij(HessM f(P ⋆
min)) = ∆λij(A) := λi(A)− λj(A) > 0,

i = p+ 1, p+ 2, . . . , d

j = 1, . . . , p− 1, p

λ⋆
max = ∆λd,1(A), λ⋆

min = ∆λp+1,p(A) (a.k.a. eigengap)

18 / 25



Local Convergence Rates of the Discretized CSD

Condition numbers: σ(HessM f(x⋆)) = {λ⋆
1, . . . , λ

⋆
n}, λ⋆

max /min := max / min
1≤i≤n

|λ⋆
i |

◮ x-residual: max
{∣∣1− ηλ⋆

min
∣∣,
∣∣1− ηλ⋆

max
∣∣} κx ≈

max{−λ⋆
1,λ

⋆
n}

min{−λ⋆
k
,λ⋆

k+1}

◮ V -residual: max
{∣∣1− η(λ⋆

k+1 − λ⋆
k)
∣∣,
∣∣1− η(λ⋆

n − λ⋆
1)
∣∣} κV ≈

λ⋆
n−λ⋆

1
λ⋆
k+1−λ⋆

k

Example. A ∈ Rd×d
sym , f(P ) = Tr(PA) on Grp(Rd) with p > 1

◮ Condition number at the global minimizer: ∆λd,1(A)
∆λp+1,p(A)

◮ Condition number at the index-1 saddle point: ∆λd,1(A)
min{∆λp,p−1(A),∆λp+1,p(A),∆λp+2,p+1(A)}

λij(HessM f(P ⋆
saddle)) = ∆λij(A),

i =✘✘✘p+ 1p, p+ 2, . . . , d

j = 1, . . . , p− 1, p+ 1✁p

λ⋆
max = ∆λd,1(A), λ⋆

min = min{∆λp,p−1(A),∆λp+1,p(A),∆λp+2,p+1(A)}
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Example. A ∈ Rd×d
sym , f(P ) = Tr(PA) on Grp(Rd) with p > 1

◮ Condition number at the global minimizer: ∆λd,1(A)
∆λp+1,p(A)

◮ Condition number at the index-1 saddle point: ∆λd,1(A)
min{∆λp,p−1(A),∆λp+1,p(A),∆λp+2,p+1(A)}

More nondegeneracies needed & Worse conditioned!
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Numerical Results — Linear Eigenvalue Problems

Problem description: For any A ∈ Rn×n
sym , find the saddle points of

f(X) :=
1

2
Tr(X⊤AX) with X ∈ Stp(Rn)

or

f̃(P ) :=
1

2
Tr(PA) with P ∈ Grp(Rn)

Explicit solutions: A = Udiag(λ1, . . . , λn)U
⊤, U ∈ O(n), for the index-1 saddle points

X⋆ = [U·,1:p−1, U·,p+1], P ⋆ = X⋆(X⋆)⊤, f(X⋆) = f̃(P ⋆) =
1

2

( p−1∑

i=1

λi + λp+1

)
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Numerical Results — Linear Eigenvalue Problems

Importance of non-redundant parameterization
◮ n = 64, p = 8, ξ = 1.01, ηSt = 2.0, ηGr = 4.0

◮ Searching for index-1 saddle points
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Fig. 11. Convergence curves of algorithms running on the Grassmann and Stiefel manifolds
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Numerical Results — Linear Eigenvalue Problems

Importance of non-redundant parameterization

Table 1. Empirical success rates (100 trials) around the global minimizer and index-1 saddle point

Algorithms Perturbation from global minimizer Perturbation from saddle point

10−3 10−2 10−1 100 101 10−3 10−2 10−1 100 101

Grassmann 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Stiefel 0% 0% 0% 29% 33% 100% 98% 59% 25% 30%

The Stiefel version fails often due to parameterization redundancy
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Numerical Results — Linear Eigenvalue Problems

Influence of problem data on performance
◮ n ∈ {10, 20, . . . , 80}, p ∈ {2, 3, . . . , 8}, ξ ∈ {1.0001, 1.001, 1.01, 1.05}

◮ Using the estimated best step sizes ηbest
x , ηbest

V

◮ Searching for index-1 saddle points

Estimated condition number: κ =
ξn−1 − 1

ξp−2(ξ − 1)
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Numerical Results — Linear Eigenvalue Problems

Influence of problem data on performance
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Fig. 12. Average iteration numbers (10 trials) and estimated condition numbers (ξ = 1.05)

🤩 Good agreement between iteration numbers and estimated condition numbers
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Numerical Results — Electronic Excited-State Calculations

Results on the H2 molecule
◮ Restricted HF/6-31G (RHF): Gr1(R4), dim = 3

◮ Restricted CASSCF (RCAS) (2,2)/6-31G:
(
S3 ×O(4)

)
/
(
O(2)×O(2)

)
, dim = 7

◮ FCI (reference): S15, dim = 15

Fig. 13. H2 molecule with a varying bond length
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Numerical Results — Electronic Excited-State Calculations
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Fig. 14. Found saddle points of RCAS and
RHF (1,000 trials) vs FCI states

🔍 RHF (dim = 3) captures 3 ~ 4 FCI states
🔍 RCAS (dim = 7) captures all the FCI states
🔍 Higher-index saddle points → Higher excitations
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Fig. 15. Projection of RCAS saddle points onto FCI states

🔍 Non-one-to-one correspondences: one RCAS → many FCI; many RCAS → one FCI
🔍 Swaps in RCAS indices with the bond length varying
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Take-Home Messages

◮ Electronics excited states as saddle points of the exact energy functional
◮ Variational approximate levels of theory on Riemannian manifolds
◮ Constrained saddle points of energy functionals in approximate theories
◮ Existing works: instability at saddle points, restriction to special manifolds
◮ A constrained saddle dynamics built on the Grassmann bundle geometry

– Local theoretical properties under weaker assumptions
– Non-redundant parameterization, ill condition
– Applications to standard benchmark molecules

👉 Reference for this talk: 2601.03931
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